Use the graph to estimate the limits and value of the function, or explain why the limits do not exist.

(a)
$$\lim_{x \to 1^{-}} g(x)$$

(b)
$$\lim_{x \to 1} g(x)$$

(c)
$$\lim_{x \to 1} g(x)$$

(d)
$$g(1)$$

2. Use the graph of f(x) below to find the following values and limits. If a limit does not exist, briefly explain why.

a.
$$\lim_{x\to -1^-} f(x)$$

b.
$$\lim_{x\to -1^+} f(x)$$

c.
$$f(-1)$$

d.
$$\lim_{x\to -1} f(x)$$

e.
$$\lim_{x\to 1^-} f(x)$$

f.
$$\lim_{x\to 1^+} f(x)$$

g.
$$f(1)$$

h.
$$\lim_{x\to 1} f(x)$$

3. Use the graph of f(x) below to find the following values and limits. If a limit does not exist, briefly explain why.

[-4, 4] by [-3, 3]

- a. $\lim_{x\to -1^-} f(x)$
- b. $\lim_{x\to -1^+} f(x)$
- c. f(-1)
- d. $\lim_{x\to -1} f(x)$
- e. $\lim_{x\to 1^-} f(x)$
- f. $\lim_{x\to 1^+} f(x)$
- g. f(1)
- h. $\lim_{x\to 1} f(x)$

4. Graph the function below on the coordinate plane provided, then use the graph to determine the following limits and values. If a limit does not exist, briefly explain why.

$$f(x) = \begin{cases} -2, & x < -2\\ x^2 - 2, & -2 \le x < 0\\ x - 2, & x \ge 0 \end{cases}$$

- a. $\lim_{x\to -2^-} f(x)$
- b. $\lim_{x\to -2^+} f(x)$
- c. f(-2)
- d. $\lim_{x\to -2} f(x)$
- e. $\lim_{x\to 0^-} f(x)$
- f. $\lim_{x\to 0^+} f(x)$
- g. f(0)
- h. $\lim_{x\to 0} f(x)$

5. Graph the function below on the coordinate plane provided, then use the graph to determine the following limits and values. If a limit does not exist, briefly explain why.

Let
$$f(x) = \begin{cases} -0.5x, & x < -2\\ \sqrt{x+2}, & x \ge -2 \end{cases}$$
.

$$[-4, 4]$$
 by $[-3, 3]$

i.
$$\lim_{x\to -2^-} f(x)$$

j.
$$\lim_{x\to -2^+} f(x)$$

k.
$$f(-2)$$

I.
$$\lim_{x\to -2} f(x)$$

6. Graph the function below on the coordinate plane provided, then use the graph to determine the following limits and values. If a limit does not exist, briefly explain why.

Let
$$f(x) = \begin{cases} \sqrt{1-x}, & x \le 1\\ 0.5x - 2, & x > 1 \end{cases}$$

$$[-4, 4]$$
 by $[-3, 3]$

a.
$$\lim_{x\to 1^-} f(x)$$

b.
$$\lim_{x\to 1^+} f(x)$$

c.
$$f(1)$$

d.
$$\lim_{x\to 1} f(x)$$

Sketch a possible graph for a function f that has the stated properties. f(-2) exists, $\lim_{x \to -2} f(x)$ exists, f is not continuous at f(x) and f(x) does not exist.

- [-4, 4] by [-3, 3]
- Sketch a possible graph for a function f, where $\lim_{x\to 3} f(x)$ exists, f(3) = 1, and f is not continuous at x = 3.

